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Abstract

Models of neural responses to rich stimuli often assume that neurons are only se-
lective for a small number of linear projections of a potentially high-dimensional
stimulus. Here we address the case where the response depends on the quadratic
form of the input rather than on its linear projection, that is, the neuron can be
sensitive to the local covariance structure of the stimulus preceding the spike.
To infer this quadratic dependence in the presence of arbitrary (e.g. naturalistic)
stimulus distribution, we present both an information-theory-based approach and
a likelihood-based approach. The first can be viewed as an extension of maximally
informative dimensions to quadratic stimulus dependence, while the second anal-
ogously extends the generalized linear model framework. We analyze the formal
connection between the likelihood- and information-based approaches to show
how they lead to consistent inference, and we demonstrate the practical feasibility
of the two procedures on a synthetic neuron model responding to natural scenes.
These new tools should be directly applicable for probing the feature selectivity
in higher sensory areas.

1 Introduction

The concept of a receptive field, i.e., the region of stimulus space where changes in the stimulus
modulate the spiking behavior of the neuron, is central to current understanding of how sensory
neurons map stimuli onto patterns of spiking and silence. For instance, a ganglion cell in the retina
may be sensitive only to specific changes in light intensity that occur within a small visual angle.
One productive way of mathematically capturing this notion of locality has been to think of a re-
ceptive field as one or more linear filters that act on the stimulus; only those stimulus variations that
result in the change in filter output have the ability to affect the neural response. In this view, the neu-
rons are performing dimensionality reduction by linear projection, and the success of data analysis
techniques based around this idea must depend on whether a small number of linear filters suffices
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to fully account for the neuron’s sensitivity. We currently lack systematic and tractable methods for
inferring neural sensitivities when the initial dimensionality reduction step is not linear, but higher-
order (e.g. quadratic). In this paper we present two complementary approaches that can be used to
learn quadratic stimulus dependence even when neurons are responding to rich, naturalistic stimuli.

Suppose a neuron is driven by presenting stimulus clips s (where the N components of s represent
successive stimulus values in time and optionally across space) drawn from some distribution P (s).
If the neuron is well described by the linear-nonlinear (LN) model, where the spiking rate r is an
arbitrary positive pointwise nonlinear function f of the stimulus projected onto the filter, r(s) =
f(k · s), and the stimulus distribution is chosen to be spherically symmetric, P (s) = P (−s), we
can use the spike-triggered averaging (STA) to obtain an unbiased estimate of the single linear
filter k [1, 2]. Spike-triggered covariance (STC) generalizes the filter inference to cases where
the firing rate depends nonlinearly on K ≥ 1 projections of the stimulus, r(s) = f(k1 · s,k2 ·
s, . . . ,kK · s) [3]. The number of relevant linear filters, K, is equal to the number of nonzero
eigenvalues of the spike-triggered covariance matrix. A successful application of STC requires
that P (s) be Gaussian, and a small K (usually ≤ 3) to ensure reasonable sampling of the filters
and the nonlinearity f in a typical experiment. STC has been used successfully, for example, to
understand the computations performed by motion sensitive neurons in the blowfly [4], to map out
the sensitivity to full field stimuli and contrast gain control in salamander retinal ganglion cells [5, 6],
and to understand adaptation in the rat barrel cortex [7].

Despite their utility and simplicity, spike-triggered methods require the use of statistically simple
stimuli and in particular, exclude the use of stimuli with naturalistic statistics, e.g. with 1/f spectra,
non-gaussian histograms and/or higher-order correlations. This is a big challenge when studying
neurons beyond the sensory periphery that are responsible for extracting higher-order structure,
or neurons unresponsive to white noise presentations, for example in the auditory pathway. To
address this issue and recover the filter(s) in an unbiased way with an arbitrary stimulus distribution,
maximally informative dimensions (MID) [8, 9] have been developed and utilized, for example to
recover simple cell receptive fields. MID looks for a linear filter k that maximizes the information
between the presence / absence of a spike and the projection x of the stimulus onto k, x = k · s.
Information per spike is then given by the Kullback-Leibler divergence of P (x|spike), the spike-
triggered distribution (the distribution of stimulus projections preceding the spike) and P (x), the
prior distribution (the overall distribution of projections):

Ispike = DKL [P (x|spike)||P (x)] =
∫
dx P (x|spike) log2

P (x|spike)
P (x)

. (1)

Given the spike train and the stimulus, finding k becomes an information optimization problem in
Ispike that can be solved using various annealing methods, although care must be taken due to the
existence of local extrema.

Spike-triggered methods and MID do not explicitly assume a form for the nonlinearity f(·) in the
LN model; instead, they provide unbiased estimates of the filter(s), and once the filters are known,
the nonlinearity can be reconstructed using the Bayes’ rule from sampled spike-triggered and prior
distributions:

f(x) ∝ P (spike|x) =
P (x|spike)P (spike)

P (x)
, (2)

where P (spike) is directly related to the average firing rate during the experiment.

Let us now consider a situation where the neuron has a vanishing linear filter, as is the case with a
complex cell or high-frequency auditory nerves [10]. In that case we should look for more than one
linear filter, which for maximally informative approaches means finding a set of orthogonal vectors
k1, . . . ,kK such that the projections of the stimuli xi = ki ·s jointly maximize the information with
the spike in Eq (1). For a model complex cell, we would have two phase-shifted vectors k1 and k2

that together form a quadrature pair, such that the most informative variable about the firing is the
“power”,

r(s) = f
[
(k1 · s)2 + (k2 · s)2

]
. (3)

Similarly, models of contrast gain control in the retina also include sensitivity to second-order fea-
tures in the stimulus, with the spiking probability being [5]

r(s) =
f(k0 · s)∑M

i=1 wi(ki · s)2 + σ2
, (4)
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where the quadratic terms in the denominator scale down the gain at high contrast (in this case
however, the neuron does not have a vanishing linear filter k0).

We can describe these and other cases by a generic “quadratic” model neuron which is sensitive to a
second-order form of the input (parametrized by a real symmetric matrix Q) in addition to the linear
projection (parametrized by the filter k0):

r(s) = f(k0 · s, sTQs). (5)

For the contrast gain control model described in Eq (4) the matrix Q is of rank M , with eigenvalues
wi and eigenvectors ki. The complex cell example described in Eq (3) has k0 = 0 and Q =∑2
i=1 kikT

i ; in other words, Q is a rank-2 matrix.

Graphically, while a threshold LN model with a linear filter corresponds to a classifier whose sepa-
rating hyperplane is perpendicular to the filter, the proposed LN model with a threshold nonlinearity
and a quadratic filter Q is selective for all stimuli that lie in an N -dimensional ellipsoid whose axes
correspond to the eigenvectors of Q.

Since every real symmetric matrix can be spectrally decomposed into Q =
∑N
i=1 λikik

T
i , we could

try recovering the quadratic dependence of Q in Eq (5) by multidimensional MID, hoping to in-
fer all {ki} as orthogonal informative dimensions. While formally true, this is infeasible in prac-
tice because the distributions in Eq (1) would be N -dimensional and impossible to sample. The
same sampling problem would reappear when trying to estimate the nonlinearity in Eq (2). In con-
trast, the relevant distributions for a (purely) quadratic model are only one-dimensional functions
of x = sTQs, making such inference possible even when Q is not of low rank. Clearly, this ad-
vantage has been gained by assuming that projections onto eigenvectors of Q combine as a sum
of squares. This assumption is not only a mathematical convenience: well-known phenomena of
phase invariance, adaptation to local contrast or sensitivity to the signal envelope are all examples
of second-order stimulus sensitivity. Furthermore, various other response phenomena in the visual
cortex grouped together as relating to the nonclassical receptive field could be manifestations of
quadratic or higher-order sensitivity [13]. Examples of recent work establishing connections be-
tween higher-order structure of natural scenes and neural mechanisms beyond the sensory periphery
(e.g. [14, 15]) make the development of corresponding methods for neural characterization, such as
the one presented here, very timely.

2 Finding quadratic filters using information maximization

One way of reconstructing the quadratic filter Q from a recorded spike train is to maximize the
information in Eq (1), where x is now given by x = sTQs. Taking a derivative of Eq (1) with
respect to Q gives

∇QI =
∫
dx PQ(x)

[〈
ssT
∣∣x, spike

〉
−
〈
ssT
∣∣x〉] d

dx

(
PQ(x|spike)
PQ(x)

)
, (6)

where brackets indicate averaging over the spike-triggered or prior distributions respectively, and
the subscript Q makes the dependence of the distributions explicit. Only the symmetric part of
Q contributes to x, and the overall scale of the matrix is irrelevant to the information, making the
number of parameters N(N + 1)/2− 1.

To learn the “maximally informative matrix” or the quadratic filter Q, we can ascend the gradient in
successive learning steps,

Q→ Q + ε ∇QI. (7)

The probability distributions that enter the gradient term are obtained by computing x for all stimuli,
choosing an appropriate binning for the variable x, and sampling binned versions of the spike-
triggered and prior distributions. The 〈ssT〉 averages are computed separately for each bin; and the
integral in Eqs (1,6) and the derivative in Eq (6) are approximated as a sum over bins and as a finite
difference, respectively. To deal with local maxima in the objective function, we use a large starting
value of ε and gradually decrease ε during learning. This basic algorithm can be extended by using
kernel density estimation and stochastic gradient ascent / annealing methods, but we do not report
these technical improvements here.
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Figure 1: (a) IQ as a function of the number of
learning steps peaks and then plateaus. ε is de-
creased from a starting value of 0.1 to 0.01 near
the end (illustrated between the 75th and 95th step
in the inset). The black dot is the point where the
reconstructed RFs are shown in Fig. 2(b) and in
panel (b) here. (b) Reconstructed v1, v2 are ro-
tated versions of k1, k2, but span the same lin-
ear subspace (all vectors are normalized to unit
length).
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(a) Component receptive fields of model complex cell 
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(b) Reconstructed receptive fields

Figure 2: (a) The RF of the model complex cell is
given by two linear filters in Eq (10): k1 (left) and
k2 (right). (b) The reconstructed RF at the 100th
learning step with filters v1 (left) and v2 (right)
rotated to best align with k1, k2. A quadratic ex-
tension of GLM recovers this quadrature pair of
Gabor filters equally well (not shown here).

It is possible to select an approximate linear basis in which to expand the matrix Q, by writing

Q =
M∑
µ=1

αµB(µ). (8)

The basis can be chosen so that systematically increasing the number of basis components M al-
lows the reconstruction of progressively finer features in Q. We considered as {B(µ)} a family of
Gaussian bumps that tile the N × N matrix Q and whose scale (standard deviation) is inversely
proportional to

√
M . For M → N2/2 the basis matrix set becoms a complete basis, allowing every

Q to be exactly represented by the vector of coefficients α. In a “matrix basis” representation, the
learning rule becomes

αµ → αµ + ε

N∑
i,j=1

∂I

∂Qij
B(µ)
ij , (9)

where the chain rule on∇QI leads to the Trace(∇Q(α) ·B) update term.

To illustrate this approach, we consider two examples. In the first example, we consider an energy
model for a complex cell, whose spatial receptive field is defined by a quadrature-pair of Gabor
functions k1 and k2:

exp
(
− i

2/σ2
1 + j2/σ2

2

2

)
cos(κi) and exp

(
− i

2/σ2
1 + j2/σ2

2

2

)
sin(κi) (10)

with κ = 2π/3, σ1 = 1.6 and σ2 = 5, and where i and j represent pixel coordinates in a 30×30 pixel
frame. The stimuli were 20,000 grayscale 30 × 30 pixel image patches extracted from a calibrated
natural image database [16]; both stimulus clips s as well as filters k1, k2 were represented as
900-dimensional linear vectors. Spikes were generated with some probability whenever the sum
(k1 · s)2 + (k2 · s)2, or equivalently, the term sTKs (with K =

∑2
i=1 kikT

i ), exceeded a threshold
value. For this optimization, we assumed that the sought-after information-maximizing matrix Q is
of rank 2, and looked for its two eigenvectors v1 and v2.
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Figure 3: (a) A complex full-rank matrix K is generated by symmetrizing a 250× 250 pixel image
of a fluid jet. This is the true quadratic filter for our threshold LN model neuron. (b) Mutual
information increases with learning steps, peaks at step 40 and remains unchanged thereafter. Inset
shows a collection of 225 Gaussian matrix basis functions whose peaks densely tile the matrix
space; a trial matrix is constructed as a linear sum (with coefficients {αµ}) of the basis matrices,
and information optimization is performed over {αµ}. The black dot at learning step 100 is the point
where Q is extracted. (c) The reconstructed matrix kernel Q after maximizing mutual information.
(d) The normalized reconstruction error ||Q −K||2, shown in red dots decreases as the number of
basis functions M increases from 4 to 104; with enough data perfect reconstruction is possible as
M approaches the number of independent pixels in K. The black dot corresponds to M = 225 used
to extract the maximally informative Q shown in panel (c). The spatial resolution of Q improves as
M is increased.

The convergence of the reconstruction procedure is shown in Fig. 1(a). The energy model has an
inherent phase ambiguity since the factors cos(κi) and sin(κi) in the Gabor functions of Eq (10) can
be replaced by cos(κi+ φ) and sin(κi+ φ) for any φ without changing the responses of the model;
this means that the best possible reconstruction is a vector pair v1, v2 that is equal to the pair k1, k2

up to a rotation. Figure 1(b) shows that this is indeed the case for reconstructed filters v1 and v2,
which otherwise match the true filters very well, as shown in Fig. 2. The inference method is robust
to different choices for the threshold and probability of generating a spike, producing consistent
results as long as enough spikes are available.

In the second example we make use of the matrix basis expansion from Eq (8) to infer a quadratic
kernel K that is of arbitrarily high rank. For K we used a symmetrized 250× 250 pixel image of a
fluid jet as shown in Fig. 3(a). While this is not an example of a receptive field from biology, it illus-
trates the validity of our approach even when the response has an atypical and complex dependence
on the stimulus. Spikes were generated by thresholding sTKs, and the same naturalistic stimulus
ensemble was used as before. Gaussian basis matrices shown in the inset of Fig. 3(b) were used to
represent the quadratic kernel, reducing the number of optimization parameters from ∼ 6 × 104 to
M = 225. We start the gradient ascent with a large ε value of 1 and progressively scale it down
to 0.1 near the end of the algorithm; Fig. 3(b) shows the information plateauing in about 40 learn-
ing steps. The maximally informative quadratic filter reconstructed from these basis coefficients is
shown in Fig. 3(c). Figure 3(d) demonstrates how reconstruction error systematically decreases as
the number of basis functions M is increased from 4 to 104, improving precision.

These examples show how quadratic filters can be extracted using information maximization for
both low-rank and full-rank matrices with simple (threshold) LN models. To analyze real data, we
would have to simultaneously look for the most informative linear filter k0 as well as the matrix Q
of Eq (5), which should remain a feasible inference task using a matrix basis.

3 Generalized quadratic models for extracting filters in the likelihood
framework

A powerful technique for modeling neural spiking behavior is the Generalized Linear Model (GLM)
framework [11, 12]. This has been used recently with much success to account for the stimulus
dependence, spiking history dependence and interneuronal coupling in a population of 27 retinal
ganglion cells in macaque retina [17]. For a single neuron, the model assumes that the instantaneous
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spiking rate λ(t) is a nonlinear function f of a sum of contributions,

λ(t) = f (k · s(t) + g · y(t−) + µ) , (11)

where k is a linear filter acting on the stimulus s, g is the linear filter acting on the past spike train y
of the neuron, and µ is an “offset” or intrinsic bias term towards firing or silence. When the stimulus
and the spike train are discretized into timebins of duration ∆, the probability of observing (an
integer number of) yt spikes is Poisson, with the mean given by λt∆ (where the subscript indexes
the time bin). Here we neglect the history dependence of the spikes (with no loss of generality) and
focus instead on the stimulus dependence; since each time bin is conditionally independent given
the stimulus (and past spiking), the log likelihood for any spike train {yt} is [18]

logP ({yt}|s) =
∑
t

yt log λt −∆
∑
t

λt + c, (12)

where c does not depend on the parameters µ and k. This likelihood can be maximized with re-
spect to µ and k (and optionally g) given the data, providing an estimate of the filters from neural
responses to complex stimuli. In contrast to maximally informative approaches, the functional form
of the nonlinearity f is explicitly assumed in likelihood-based methods like GLM. For specific forms
of f , such as f(z) = log(1 + exp(z)) or f(z) = exp(z), the likelihood optimization problem for
the filter parameters is convex and gradient ascent is guaranteed to find a unique global maximum.

The disadvantage of this approach is that if the chosen nonlinearity f is different from the true
function f ′ used by the neuron, the filters inferred by maximizing likelihood in Eq (12) could be
biased. If we relax the stringent requirement for convexity, we can choose more general nonlinear
functions for the model, for example by parametrizing the nonlinearity in a point-wise fashion and
inferring it jointly with the filters. For this discussion however, we assume that f has been selected
from the tractable set of nonlinearities guaranteed to yield a convex likelihood function.

How can we extend the GLM to cases where the neuron’s response is more complex than a single
linear projection of the stimulus? One idea is to perform a simple “kernel trick”: we expand the
stimulus clip s of dimension N into a larger space first, for instance by forming sTs (of dimension
N×N ) and then operate on this object with a filter, i.e.,

∑N
i,j=1(sisj)Qij . Such a term can be added

to the argument of f in the model exemplified in Eq (11). Specifically, we propose a generalization
to quadratic dependence of the following form,

λ(t) = f
(
k · s(t) + sT(t)Qs(t) + g · y(t−) + µ

)
. (13)

If we want to retain convexity, we cannot expand Q in its eigenbasis and learn its vectors by max-
imizing the likelihood, because the eigenvectors would appear quadratically. However, we can ex-
pand Q into a weighted sum of matrix basis functions, as in Eq (8), making the argument of f a
linear function of basis coefficients αµ,

λ(t) = f

(
k · s(t) +

M∑
µ=1

[
sT(t)B(µ)s(t)

]
αµ + g · y(t−) + µ

)
. (14)

Existing methods for inferring GLM parameters can be used to learn both the linear filter and the
quadratic filter Q efficiently. After extracting Q it is possible to check if a few principal components
account for most of its structure (equivalently, if Q is really of low rank). This consequently pro-
vides a way of extracting multiple filters with GLM analogous to diagonalizing the spike-triggered
covariance matrix. We have implemented such a quadratic extension to the GLM and verified that
it accurately recovers the quadrature pair of Gabor filters in a power model for a complex cell (not
shown).

4 Connection between information theoretic and likelihood-based features

We now demonstrate analytically that under rather general assumptions the linear or quadratic filters
obtained by maximizing mutual information match the filters inferred by maximizing the likelihood.
We adapt a reasoning which has been used in the context of inferring protein-DNA sequence-specific
interactions in Ref [19], to neural responses.

In what follows, x is still the projection of the stimulus s onto the linear (xt = k · st) or quadratic
(xt = sT

tQst) filter, with time discretized into bins of duration ∆ indexed by subscript t. We
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collect all parameters that determine the filter into a vector θ1. Given an xt, yt spikes are gener-
ated according to some conditional probability distribution π(yt|xt). This probability distribution
is assumed to be Poisson with mean given by f(xt) in the case of GLM but we take a different
approach. We discretize xt into x = 1, . . . ,K bins and parameterize π(yt|xt), a Ymax ×K matrix,
by a set of parameters θ2. Apart from assuming a cutoff value for the number of spikes per bin
Ymax (which can always be chosen large enough to assign an arbitrarily low probability to observ-
ing > Ymax spikes in any real dataset) and a particular discretization of the projection variable x,
we leave the probabilistic relationship π(y|x) between the projection and spike count completely
unconstrained. The transformation from the stimulus to the spikes is then a Markov chain, fully
specified by θ = {θ1, θ2},

st
θ1−−−−→

k or Q
xt

θ2−→
π
yt. (15)

The likelihood of the spike train {yt} given the stimulus s is P ({yt}|s) =
∏T
t=1 π(yt|xt), where T

is the total number of time bins in the dataset. With x discretized into K bins, any dataset can be
summarized by the count matrix cyx =

∑T
t=1 δ(y, yt)δ(x, xt), where δ is the Kronecker delta; note

that cyx = T p̃(y, x), where p̃ is simply the empirical distribution in the data of observing y spikes
jointly with projection x. In terms of c, the likelihood of the observed spike train is P ({yt}|s) =∏Ymax
y=0

∏K
x=1 π(y|x)cyx . Assuming that x is adequately discretized and that π is Poisson with mean

f(x), we will recover the GLM likelihood of Eq (12).

Suppose that we are only interested in inferring the filter (parametrized by θ1), but neither want to
infer the filter-to-spike mapping π (parameterized by θ2), nor make any further assumptions about
its structure. In that case we can integrate the likelihood over θ2 with some prior Pp(θ2) such that

P ({yt}|s) =
∫
dθ2 Pp(θ2)

∏
y,x

π(y|x)cyx . (16)

This resulting likelihood, called the model averaged likelihood, is now only a function of θ1. The
prior Pp(θ2) can take many forms, but since we discretized x, thereby making π(y|x) into a (condi-
tional probability) matrix, the simplest choice for the prior is the so-called uniform prior. In this case
we take θ2 to be directly the entries in π(y|x) matrix and choose P (θ2) to be uniform over all valid
matrices π, such that the matrix entries are positive and the normalization constraint,

∑
x π(y|x) = 1

for every x, is enforced.

For any choice of prior we can write Eq (16) as

P ({yt}|s) =
∫
dθ2 Pp(θ2) exp

[
T
∑
y,x

p̃(y, x) log π(y|x)

]
, (17)

which, after some algebra, can be reorganized into

P ({yt}|s) =
∫
dθ2Pp(θ2) exp

[
T
{
Ĩ(y;x)− S̃(y)− 〈DKL(p̃(y|x) || π(y|x))〉p̃(x)

}]
. (18)

Here Ĩ(y;x) =
∑
y,x p̃(y, x) log p̃(y,x)

p̃(y)p̃(x) is the empirical mutual information between spike counts

y and projection x, S̃(y) is likewise the empirical spike count entropy, and the “correction” term
in brackets measures the average (Kullback-Leibler) divergence between the empirical and model
conditional distributions. Importantly, only this correction term is a function of the π and thus of
θ2, and is affected by the prior Pp(θ2) which is being integrated over; the other terms can be pulled
outside of the integral. We can therefore write the per-timebin log likelihood as

L =
1
T

logP ({yt}|s) = Ĩ(y;x)− S̃(y)− Λ, (19)

where the correction is

Λ = − 1
T

log
∫
dθ2 Pp(θ2)e−T 〈DKL(p̃(y|x) || π(y|x))〉p̃(x) . (20)

It is necessary to show that as the amount of data T grows, the correction Λ decreases for a given
choice of prior distribution Pp(θ2), and for the choice of uniform prior this is possible analytically
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[19]. Intuitively, it is clear that as T → ∞, the empirical distribution p̃(y|x) converges to the true
underlying distribution p(y|x), and the integral becomes dominated by the extremal point θ∗2 , such
that, in the saddle point approximation,

Λ(T →∞) ∼ 〈DKL(p(y|x) || π∗(y|x))〉p(x). (21)

The distribution π∗(y|x) is the closest distribution to p(y|x) in the space over which the prior Pp(θ2)
is nonzero. As long as the prior assigns a non-zero probability to any (normalized) distribution, the
divergence in Λ will decrease and Λ will vanish as T grows. The case in which Λ does not decay
occurs when the prior completely excludes certain distributions by assigning zero probability, while
the data p(y|x) precisely favors those excluded distributions.

Returning to the per-timebin log likelihood L in Eq (19), as we decrease the time bin ∆, we enter a
regime where there is only 0 or 1 spike per bin, i.e., y ∈ {0, 1}. Then the empirical information per
time bin Ĩ(y;x) can be written as,

Ĩ(y;x) = p̃(y = 0)DKL (p̃(x|y = 0)||p̃(x)) + p̃(y = 1)DKL (p̃(x|y = 1)||p̃(x)) , (22)

that is,
Ĩ(y;x) = p̃(silence)Ĩsilence + p̃(spike)Ĩspike. (23)

If the information in the spike train is dominated by the information carried in spikes [20], then the
likelihood from Eq (19) becomes

L = p̃(spike)Ĩspike + . . . , (24)

where . . . are terms that either do not depend of the filter parameters θ1 (i.e. entropy of the spike
counts S̃(y)), or vanish as the size of dataset grows (Λ). The identity in Eq (24) is the sought-
after connection between the inference using information maximization and the likelihood-based
approach. In the limit of small time-bins, maximizing the information per spike Ispike (in maximally
informative approaches, as in [8] and Section 2 of this paper), on right-hand side of the identity, is
the same as maximizing the model averaged likelihood L of Eq (19), on the left-hand side of the
identity.

5 Discussion

While powerful conceptually, the notion that neurons respond to multiple projections of the stim-
ulus onto orthogonal filters is typically difficult to turn into a tractable inference procedure when
the number of filters is larger than two. To address this concern, we proposed an alternative neural
model where the neuron can be jointly sensitive to linear and quadratic features in the stimulus.
Instead of being described by multiple linear filters, the neuron’s sensitivity is described by a single
linear and a single quadratic filter. We motivated this choice by showing that a number of neural
phenomena previously described in isolation can be seen as instances of quadratic stimulus sensi-
tivity. We then presented two inference methods for such quadratic stimulus dependence: one based
on information maximization and the other based on maximizing likelihood in a class of generalized
linear models. With information maximization, no assumptions are made about how projections
onto the linear and quadratic filters (probabilistically) map into spiking and silence. This approach
yields unbiased filter estimates under any stimulus ensemble, but requires optimization in a possibly
rugged information landscape. Alternatively, with a proper choice of nonlinearity and filter basis,
likelihood inference within the GLM class can be extended to quadratic stimulus dependence while
retaining the convexity of the likelihood. Lastly we demonstrated that the information-maximization
approach and maximum likelihood inference will generically yield consistent filter estimates when
(i) the timebins are made so small that each timebin contains either zero or a single spike; (ii) in the
likelihood picture no single nonlinearity is assumed a priori, but the inference of the filters is done
while simultaneously averaging over all possible choices for the nonlinearity with an uninformative
(e.g. uniform) prior. Phase invariance, adaptation to local contrast or sensitivity to signal envelope
are widespread features of sensory neuron responses [21, 22, 23]. The methods presented here will
help us systematically elucidate sensitivity to these higher-order statistical features from responses
of sensory neurons to natural stimuli.
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