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Linking task structure and neural network 
dynamics
The solutions found by neural networks to solve a task are often inscrutable. We have little insight into why a 
particular structure emerges in a network. By reverse engineering neural networks from dynamical principles, 
Dubreuil, Valente et al. show how neural population structure enables computational flexibility.
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Artificial neural networks can be 
trained to achieve human-level 
performance in games and brain-like 

performance on neuroscience tasks1,2, but 
we still do not understand how the magic 
happens. In ‘backprop’ — the go-to learning 
algorithm for training deep networks — the 
error gradient gradually pushes each neuron 
away from the unfavorable activity it is 
generating and the network toward better 
task performance. Slowly edging away from 
the mistakes, ex negativo, seems to work 
well. But on the flipside, we still do not 
understand what units are actually doing 
once they have converged to a particular 
solution; it still feels a bit like pulling a  
rabbit out of a hat.

Currently, there are two opposing 
perspectives. One view is that each 
individual neuron has a certain 
computational function as evidenced by a 
particular response profile, and a network 
can be understood as the aggregate of all 
the individual neurons’ response profiles. 
An example of this would be a neuron that 
responds only to a particular stimulus, but 
not to others, or fires only at a particular 
moment in time. Thus, at an aggregate level, 
we can have different groups of neurons 
tuned to particular things. The other view is 
that the computation is not expressed at the 
level of individual neurons, but only at the 
level of an entire population, where it can be 
understood as tracing out a low-dimensional 
manifold3,4. In the latter case, when 
looking at single-neuron response profiles, 
information may appear ‘mixed’ or 
‘multiplexed’ — that is, a single neuron 
may respond to many different stimuli, and 
appear non-selective in its response profile.

Two recent studies exemplify this 
dichotomy well. Raposo, Kaufman and 
Churchland5 found no non-random 
population structure in the posterior parietal 
cortex when mice performed multi-sensory 
decision-making tasks; in other words, all 
the individual neurons appeared mixed in 

their response profiles. On the other hand, 
using a different behavioral task (odor 
discrimination), Hirokawa, Vaughan et al.6 
observed that neurons in rat prefrontal 
cortex could be arranged into different 
groupings with specific response profiles. 

It seems that in certain cases looking at 
aggregate dynamics makes sense, but in 
others we can also learn something from 
individual response profiles. There has  
been very little attempt to try to align these 
views — until now.
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Fig. 1 | Reverse engineering the solution to the perceptual decision-making (DM) and 
context-dependent decision-making (CDM) tasks with low-rank recurrent neural networks 
(LR-RNNs). a, In the DM task, the input signal (which can take the shape of A or B, for example) needs 
to be integrated over time. When neural networks were trained on this task, only one undifferentiated 
neural population was found to be sufficient to implement the task. In low-rank networks, adjusting 
coupling factors σ̃nI and σ̃nm was sufficient to reproduce the results. b, In the CDM task, depending on 
context (A or B), either input A or input B needs to be integrated. When neural networks were trained 
on this task, two different subpopulations with different response profiles (yellow and red) were found 
to be necessary. The results can be reproduced in low-rank networks by letting inputs A and B act on the 
internal dynamics through two different input-to-internal coupling factors, σ̃nIA and σ̃nIB. The contextual 
inputs (A and B) act on the input-to-internal couplings, allowing context-dependent responses.
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Could it be that the particular choice of 
tasks leads to the differences observed in 
the studies above? If so, then when do we 
actually need different groups of neurons 
with particular response profiles rather than 
a population in which single units show a 
mixed profile? A similar confusion arises 
in the case of learning multiple tasks, or 
‘multi-task learning’7–10. When Yang et al.7 
trained artificial neural network models 
simultaneously on multiple cognitive tasks, 
several groups of neurons emerged, some of 
which were engaged across multiple tasks. 
Some tasks were seemingly more similar to 
each other and leveraged the same group 
of neurons. But it is not clear at what point 
distinct groups of neurons with different 
functionalities need to emerge to facilitate 
multi-task learning.

These are precisely the questions 
addressed in the work by Dubreuil, 
Valente et al.11, where the authors reverse 
engineered artificial neural networks 
for a variety of tasks. The authors 
considered five commonly used cognitive 
neuroscience tasks and found that only in 
context-dependent decision-making (CDM; 
Fig. 1b) and delayed match-to-sample 
(DMS) tasks did trained networks exhibit 
groupings of neurons with different 
response profiles. In the other tasks (such as 
simple perceptual decision-making (DM); 
Fig. 1a), the information in the artificial 
networks was found to be fully mixed at 
the single-neuron level. To confirm that 
different groupings are indeed necessary 
in one case but not the other, the authors 
built surrogate networks by randomly 
resampling the weights from a Gaussian 
distribution that best fit the learned weights. 
The surrogate networks performed worse 
than the original networks on the CDM 
and DMS tasks (Fig. 1b), but not the others 
(such as DM; Fig. 1a). This confirmed 
that population structure is necessary for 
task performance and suggested that more 
complex tasks (for example, modifying 
outputs based on context, or matching 
inputs to outputs after a delay) require more 
complex population structures.

What about those tasks requires separate 
neural populations? Dubreuil, Valente 
et al. propose that this is best answered by 
viewing network activity through the lens of 
neural dynamics12. In accompanying work, 
the same team describes how to leverage 
low-rank networks to better understand 
neural dynamics13,14. In such low-rank  
neural networks, the evolution of neural 
activity can be fully determined by a  
small number of parameters. Dubreuil, 
Valente et al.11 show that the activity of a 
particular neuron can be understood in 
terms of its projection onto a handful of 

parameters in low-rank networks (Fig. 1), 
and this projection can be used to group 
neurons into different populations (on the 
basis of their coupling to input, internal, and 
output dynamics; Fig. 1). The connectivity 
structure (or coupling structure, in low-rank 
parlance), in turn, controls the type of 
dynamics that emerges in the network.  
Thus, computational functionality can 
be achieved by controlling the dynamical 
structure in the network. To demonstrate 
this, the authors reverse engineered the 
solution found by artificial networks 
by re-constructing the same dynamical 
landscape from a small number of 
parameters in low-rank networks — without 
the learning algorithm. Low-rank networks 
were able to solve simpler tasks, such as 
perceptual decision-making (DM; Fig. 1a)  
without the need to tune any of the 
connectivity-related parameters, unlike 
more complex tasks such as CDM or  
DMS (Fig. 1b).

Putting all the pieces together, we now 
have a better handle on why more complex 
tasks, such as CDM, require a more 
complex population structure. More distinct 
groupings with different functionality 
in the network means more degrees of 
freedom in terms of network dynamics. 
This, in turn, allows more flexible input–
output mappings, such as those required 
in the CDM task, where outputs need to be 
modulated in a context-dependent manner. 
In a non-differentiated, fully mixed network, 
joint dynamics would be modulated in 
unison by the inputs. By contrast, in the 
case of a more differentiated population 
with multiple groupings, different groupings 
could be modulated differently by a 
combination of inputs, allowing for more 
complex dynamics. This idea can be readily 
extrapolated to multi-tasking, where a 
model may need to process the same inputs 
differently in different tasks.

Dubreuil, Valente et al. built a bridge 
across the seemingly opposing views 
of single-unit response profiles and 
low-dimensional neural population 
dynamics. Now we realize that this has been 
a false dichotomy: population structure 
(evident at the level of single neurons 
or groups of neurons) emerges from the 
need for more flexible neural dynamics 
to fulfill particular, task-dependent, 
computational roles. So from the standpoint 
of neural dynamics, the two views can 
be complementary. Further, this work 
suggests that it is essential to consider 
them jointly when reporting results in 
order to characterize how a neural system 
implements a task.

This is the boon and bane of the insights 
generated by this work: it makes predictions 

for particular task-dependent effects to be 
observed experimentally. It is unfortunate 
that we are not (yet) at the stage of making 
more general predictions about what neural 
dynamics should look like for particular 
computational functions. But this work 
draws our attention to the fact that our 
observations are, in fact, task-dependent. 
If we are to get a handle on overarching 
computational principles, though, we need 
to be meticulous and systematic about 
recording task-related effects. Perhaps then 
we can start to group tasks on the basis 
of their dynamical profiles and recognize 
common building blocks8.

From there, we may be able to build  
on this work to crystalize a better notion  
of task complexity, which scientists 
often play fast and loose with. Perhaps 
complexity can be defined in terms of the 
minimum number of adjustable levers 
needed to implement (solve) a task, as 
recent work suggests15. This is reminiscent 
of Kolmogorov complexity, which is still 
equally inscrutable. The work by Dubreuil, 
Valente et al. suggests that what matters  
may be not just the number of levers  
(the rank of the network), but also the 
diversity of configurations possible  
(the connectivity structure). In any case, 
these findings imply that we need to think 
carefully about the kinds of tasks we use  
and how ‘complex’ they may really be.

The authors also show how we can  
build up dynamical capacity in neural 
networks by adjusting a few levers, entirely 
without using a learning algorithm.  
It would be interesting to push this approach 
further and see whether we can build a 
lexicon of dynamical motifs that can be 
re-used to solve new tasks, as some recent 
work suggests9,10.

Overall, this work lifts the veil on 
the magic of neural networks, at least 
partially, so we can sneak a peek into the 
hat. Depending on the task, one or more 
rabbit(s) may be necessary. ❐
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