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Abstract

The concept of feature selectivity in sensory signal processing can be formalized as dimensionality reduction: in a stimulus
space of very high dimensions, neurons respond only to variations within some smaller, relevant subspace. But if neural
responses exhibit invariances, then the relevant subspace typically cannot be reached by a Euclidean projection of the
original stimulus. We argue that, in several cases, we can make progress by appealing to the simplest nonlinear
construction, identifying the relevant variables as quadratic forms, or ‘‘stimulus energies.’’ Natural examples include non–
phase–locked cells in the auditory system, complex cells in the visual cortex, and motion–sensitive neurons in the visual
system. Generalizing the idea of maximally informative dimensions, we show that one can search for kernels of the relevant
quadratic forms by maximizing the mutual information between the stimulus energy and the arrival times of action
potentials. Simple implementations of this idea successfully recover the underlying properties of model neurons even when
the number of parameters in the kernel is comparable to the number of action potentials and stimuli are completely natural.
We explore several generalizations that allow us to incorporate plausible structure into the kernel and thereby restrict the
number of parameters. We hope that this approach will add significantly to the set of tools available for the analysis of
neural responses to complex, naturalistic stimuli.
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Introduction

A central concept in neuroscience is feature selectivity: as our

senses are bombarded by complex, dynamic inputs, individual

neurons respond to specific, identifiable components of these data

[1,2]. Neurons early in a processing pathway are thought to be

sensitive to simpler features [3,4], and one can think of subsequent

stages of processing as computing conjunctions of these features, so

that neurons later in the pathway respond to more complex

structures in the sensory world [5]. A major challenge for theory is

to make this intuition mathematically precise, and to use such a

precise formulation to build tools that allow us to analyze real

neurons as they respond to naturalistic inputs. There is a long

history of such work, but much of it rests on the identification of

‘‘features’’ with filters or templates. Filtering is a linear operation,

and matching to a template can be thought of as a cascade of

linear and nonlinear steps. As we will see, however, there are many

examples of neural feature selectivity, well known from experi-

ments on visual and auditory systems in many organisms, for

which such a description in linear terms does not lead to much

simplification.

In this paper we use examples to motivate the simplest

nonlinear definition of a feature, in which the relevant variable

is a quadratic form in stimulus space. Because the resulting

variable is connected to the ‘‘energy in frequency bands’’ for

auditory signals, we refer to these quadratic forms as ‘‘stimulus

energies.’’ To be useful, we have to be able to identify these

structures in experiments where neurons are driven by complex,

naturalistic inputs. We show that, generalizing the idea of

maximally informative dimensions [6], we can find the maximally

informative stimulus energies using methods that don’t require

special assumptions about the structure of the input stimulus

ensemble. We illustrate these ideas on model neurons, and explore

the amount of data that will be needed to use these methods in the

analysis of real neurons.

Motivation
To motivate the problems that we address, let us start by

thinking about an example from the auditory system. This starting

point is faithful to the history of our subject, since modern

approaches for estimating receptive fields and filters have their

origins in the classic work of de Boer and coworkers on the

‘‘reverse correlation’’ method [7], which was aimed at separating

the filtering of acoustic signals by the inner ear from the

nonlinearities of spike generation in primary auditory neurons.

We will see that mathematically identical problems arise in

thinking about complex cells in visual cortex, motion sensitive

neurons throughout the visual pathway, and presumably in other

problems as well.

We begin with the simplest model of an auditory neuron. If

the sound pressure as a function of time is s(t), it is plausible that

the activity of a neuron is controlled by some filtered version of

this stimulus, so that the probability per unit time of generating

a spike is
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r(t)~r0g

ð
dt f (t)s(t{t)

� �
, ð1Þ

where f (t) is the relevant temporal filter and g½:� is a

nonlinearity; the spikes occur at times ftig. The statement that

neurons are tuned is that if we look at the filter in Fourier space,

~ff (v)~

ð
dtf (t)eivt, ð2Þ

then the magnitude of the filter response, D~ff (v)D, has a relatively

sharp peak near some characteristic frequency vc. If we choose

the stimulus waveforms from a Gaussian white noise ensemble,

then the key result of reverse correlation is that if we compute

the average stimulus in the prior to a spike, we will recover the

underlying filter, independent of the nonlinearity,

Ss(t{ti)T!f ({t): ð3Þ

We emphasize that this is a theorem, not a heuristic data

analysis method [13–15]. If the conditions of the theorem are

not met, then the spike–triggered average stimulus may provide

a biased estimate of the filter. If the conditions of the theorem

are met, then this analysis is guaranteed to give the right answer

in the limit of large amounts of data.

As an aside, we note that the spike–triggered averaging method

does not make assumptions about the statistics of the spike train

itself. The theorem states that if the probability per unit time of

generating single spikes can be written as in Eq. (1), and if stimuli

are chosen from a Gaussian white noise ensemble, then spike–

triggered averaging recovers the underlying filter. It might be that

the probability of spiking is influenced by the time since previous

spikes, but even if this is true there is, at each moment in time, a

rate r(t) that defines the probability of spiking knowing only the

history of the stimulus, not the history of spiking. It is this

stimulus–dependent probability that we are writing in Eq. (1).

Equation (1) is an example of dimensionality reduction. In

principle, the neuron’s response at time t can be determined by the

entire history of the stimulus for times t’ƒt. Let us suppose that we

sample (and generate) the stimulus in discrete time steps spaced by

dt. Then the stimulus history is a list of numbers

st:fs(t),s(t{dt),s(t{2dt), � � � ,s(t{(D{1)dt)g, ð4Þ

where D is the effective stimulus dimensionality, set by D~T=dt,

and T the longest plausible estimate of the integration time for the

neural response. We can think of st as a D–dimensional vector. If

we know that the neural response is controlled by a linearly filtered

version of the sound pressure stimulus, even followed by an

arbitrary nonlinearity, then only one direction in this D–

dimensional space matters for the neuron. Further this really is a

‘‘direction,’’ since we can write the response as the Euclidean

projection of s onto one axis, or equivalently the dot product

between s and a vector W,

r(t)~r0g(W:st), ð5Þ

where

W~dt|ff (0),f (dt),f (2dt), � � � ,f (T)g: ð6Þ

This explicit formulation in terms of dimensionality reduction

suggests a natural generalization in which several dimensions,

rather than just one, are relevant,

r(t)~r0g(W1
:st,W2

:st, � � � ,WK
:st): ð7Þ

As long as we have K%D, it still holds true that the neuron

responds only to some limited set of stimulus dimensions, but this

number is not as small as in the simplest model of a single filter.

Notice that if an auditory neuron responds according to Eq.

(1), then it will exhibit ‘‘phase locking’’ to periodic stimuli.

Specifically, if s(t)~A cos(vt) and ~ff (v)~D~ff (v)Deziw, then

r(t)~r0g½AD~ff (v)Dcos(vt{w)�. So long as there is a nonzero

response to the stimulus, this response will be modulated at the

stimulus frequency v, and more generally if we plot the spiking

probability versus time measured by the phase y~vt of the

stimulus oscillation, then the probability will vary with, or

‘‘lock’’ to this phase.

While almost all auditory neurons are tuned, not all exhibit

phase locking. We often summarize the behavior of tuned, non–

phase–locked neurons by saying that they respond to the power in

a given bandwidth or to the envelope of the signal at the output of

a filter. The simplest model for such behavior, which has its roots

in our understanding of hair cell responses [8–11], is to imagine

that the output of a linear filter passes through a weak

nonlinearity, then another filter. The second stage of filtering is

low-pass, and will strongly attenuate any signals at or near the

characteristic frequency vc. Then, to lowest order, the neuron’s

response depends on

p(t)~

ð
dt f2(t)

ð
dt’f1(t{t{t’)s(t’)

� �2

, ð8Þ

where f1 is the bandpass filter that determines the tuning of the

neuron and f2 is a smoothing filter which ensures that the cell

responds only to the slow variations in the power in its preferred

frequency band. The probability of spiking depends on this power

p(t) through a nonlinearity, as before,

r(t)~r0 g½p(t)�: ð9Þ

Intuitively, this simple model for a non–phase–locked neuron also

represents a substantial reduction in dimensionality – all that

matters is the power passing through a given frequency band,

defined by the filter f1. On the other hand, we cannot collapse this

model into the one dimensional form of Eq. (5). To be concrete,

suppose that the filter f1 has a relatively narrow bandwidth around

its characteristic frequency vc. Then we can write

f1(t)~A(t)sin(vctzw), ð10Þ

where the amplitude A(t) varies slowly compared to the period of

the oscillation. Let us denote by t1 the temporal width of A(t),
since this corresponds to the time over which the filter f1 integrates

the stimulus, and similarly t2 will denote the temporal width of

f2(t). To make sure that the power p(t) does not oscillate at (twice)

the frequency vc, we must have t2&2p=vc. But we still have two

possibilities, (a) t1&t2&1=vc and (b) t2&t1&1=vc. If (a) is true

and there is adequate separation in the two time scales, we can

show that p(t) is the Pythagorean sum of the outputs of two filters

that form a quadrature pair,

Second Order Dimensionality Reduction
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p(t)&
ð

dt’fa(t{t’)s(t’)
� �2

z

ð
dt’fb(t{t’)s(t’)

� �2

, ð11Þ

where

fa(t)&A(t)sin(vctzw) and, fb(t)&A(t)cos(vctzw): ð12Þ

On the other hand, if (b) is true, there is no simple decomposition,

and the minimum number of dimensions that we need to describe

this model is K*t2=dt, which can be quite large.

We can measure the number of relevant dimensions using the

spike–triggered covariance matrix. Specifically, if the stimulus

vector st has components si(t), then we can form the matrix

DCij~Ssi(t)sj(t)Tt~tspike
{Ssi(t)sj(t)T, ð13Þ

where in the first term we average over the arrival time of the

spikes and in the second term we average over all time. If the

spiking probability behaves as in Eq. (7), and we choose the

stimulus from a Gaussian ensemble, then DC has K nonzero

eigenvalues [12,13,16–18,29]. In Fig. 1 we schematize the model

auditory neuron we have been describing, and in Fig. 2 we show

the spike–triggered covariance analysis for models in the two

limits, t2%t1 and t2&t1. Indeed we find that in the first case

there are approximately two relevant dimensions, a quadrature

pair of filters, whereas in the second case there are many relevant

dimensions; these dimensions appear as temporally shifted and

orthogonalized copies of the filter f1(t).

We can think of a neuron that does not phase lock as having an

invariance: it responds to acoustic waveforms that have energy in a

relevant bandwidth near vc, but it doesn’t discriminate among

signals that are shifted by small times. This invariance means that

the cell is not just sensitive to one dimension of the stimulus, but to

many, although these different dimensions correspond, in effect, to

the same stimulus feature occurring at different times relative to

the spike. Thus, we have a conflict between the notion of a ‘‘single

feature’’ and the mathematical description of a ‘‘single dimension’’

via linear projection. The challenge is to provide a mathematical

formulation that better captures our intuition. Before presenting a

possible solution, let’s see how the same problem arises in other

cases.

Since the classical work of Hubel and Wiesel [19,20], cells in the

primary visual cortex are sometimes classified as simple and

complex (but see [46]). Although Hubel and Wiesel did not give a

mathematical description of their data, in subsequent work, simple

cells often have been described in the same way that we described

the simplest auditory neuron in Eq. (1) [24,25]. If the light

intensity falling on the retina varies in space (~xx) and time (t) as

I(~xx,t), we can define a spatiotemporal receptive field F (~xx,t) and

approximate the probability that a simple cell generates a spike per

unit time as

r(t)~r0 g

ð
d2x

ð
dt F (~xx,t) I(~xx,t)

� �
: ð14Þ

If, as before, we assume that the stimulus is generated in

discrete time steps (movie frames) with spacing dt, and that the

stimulus influences spikes only within some time window of

duration T , then we can think of the stimulus at any moment

in time as being the T=dt frames of the movie preceding that

moment,

st:fI(~xx,t),I(~xx,t{dt),I(~xx,t{2dt), � � � ,I(~xx,t{T)g: ð15Þ

If the relevant region of space is within d|d pixels, then this

stimulus vector lives in a space of dimension D~d2T=(dt),
which can be enormous. As in the discussion above, Eq. (14) is

a restatement of the hypothesis that only one direction in this

space is relevant for determining the probability that the simple

cell generates a spike, and ‘‘direction’’ is once again a

Euclidean or linear projection.

For a complex cell, on the other hand, this single projection is

inadequate (simple cells can also show sensitivity to more than one

dimension [26]). Complex cells respond primarily to oriented

edges and gratings, as do simple cells, but they have a degree of

spatial invariance which means that their receptive fields cannot

be mapped onto fixed zones of excitation and inhibition. Instead,

they respond to patterns of light in a certain orientation within a

large receptive field, regardless of precise location, or to movement

in a certain direction. Corresponding to this intuition, analysis of

complex cells using the spike–triggered covariance method shows

that there is more than one relevant dimension [26]. As with non–

phase–locked auditory neurons, what defeats the simplest version

of dimensionality reduction in complex cells is the invariance of

the response, in this case, invariance to small spatial displacement

of the relevant, oriented stimulus feature [21–23].

The simplest model of a complex cell is precisely analogous to

the quadrature pair of filters that emerge in the analysis of non–

phase–locked auditory neurons. To be concrete, let us imagine

that receptive fields are described by Gabor patches. The position

~xx includes two orthogonal coordinates in visual space, which we

call x1 and x2. Gabor patches have an oscillatory dependence on

one of these coordinates, but simply integrate along the other; both

the integration and the envelope of the oscillations are described

by Gaussians, so that

F1(~xx,t)~cos(kx1)exp {
x2

1

2s2
1

z
x2

2

2s2
2

� �� �
f (t), ð16Þ

and the quadrature filter is then

F2(~xx,t)~sin(kx1)exp {
x2

1

2s2
1

z
x2

2

2s2
2

� �� �
f (t): ð17Þ

Each of these filters is maximally sensitive to extended features

oriented along the x2 direction, but the optimal patterns of light

and dark are shifted for the two filters; for simplicity we have

assumed that spatial and temporal filtering is separable. If we form

the energy–like quantity

p(t)~

ð
d2x

ð
dt F1(~xx,t) I(~xx,t)

� �2

z

ð
d2x

ð
dt F2(~xx,t) I(~xx,t)

� �2

,

ð18Þ

we have a measure of response to oriented features independent of

their precise position, and this provides a starting point for the

analysis of a complex cell.

One more example of the problem we face is provided by the

computation of motion in the visual system. There is a classical

model for this computation, the correlator model, that grew out of

the experiments by Hassenstein and Reichardt on behavioral

Second Order Dimensionality Reduction
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responses to visual motion in beetles and flies [28]. Briefly, the idea

behind this model is that if something is moving at velocity v, then

the image intensity I(x,t) must be correlated with the intensity at

I(xzD,tzt), where t~D=v. Then we can detect motion by

computing this correlation and averaging over some window W in

space and f in time,

CD,t(t)~

ð
dxW (x)

ð
dt’f (t{t’)I(x,t’)I(xzD,t’zt), ð19Þ

where for simplicity, we think just about a single spatial

dimension. In principle, with just one value of the delay t and

one value of the displacement D, this correlation ‘‘detects’’ only

motion at one velocity, v~D=t, but we can easily generalize this

computation to,

C(t)~

ð
dxW (x)

ð
dt’f (t{t’)

ð
dt
X
D

F (D,t)I(x,t’)I(xzD,t’zt),ð20Þ

where the sum over F (D,t) operates over different values of

these spatiotemporal shifts. Depending on the precise form of

this weighting we can arrange for the correlation C to have a

relatively smooth, graded dependence on the velocity.

In the insect visual system it seems natural to think of the

correlations in Eq. (20) as being computed from the outputs of

individual photoreceptors, which are typically spaced *10 apart.

In mammals, we can imagine computing a similar quantity, but we

would use the outputs of larger retinal or cortical receptive fields

[27]. We can also think about this computation in Fourier space. If

we transform

I(x,t)~

ð
dk

2p

ð
dv

2p
~II(k,v) eikx{ivt, ð21Þ

then we can think of C as integrating power or energy

P(k,v)~D~II(k,v)D2 over some region in the k{v plane; motion

corresponds to having this power concentrated along the line

v~vk. Once again there is an invariance to this computation,

since as with the non–phase–locked auditory neuron we are

looking for power regardless of phase. More directly, in this case

the brain is trying to compute a velocity, more or less

independently of the absolute position of the moving objects.

Even in an insect visual system, where computing C corresponds

to correlating the filtered outputs of neighboring photoreceptors in

the compound eye, this computation is repeated across an area

containing many photoreceptors, and hence there is no way to

collapse C down to a function of just one or two Euclidean

projections in the stimulus space.

What do these examples – non–phase–locked auditory neurons,

complex cells in the visual cortex, and visual motion detectors –

have in common? In all three cases, the natural, simplest starting

point is a model in which the brain computes not a linear

projection of the stimulus onto a receptive field, but rather a

quadratic form. More precisely, if stimuli are the vectors

s:fs1,s2, � � � sDg, then Eq’s. (8), (18) and (20) all correspond to

computing a quantity

x~s T :Q:s:
XD

i,j~1

si Qij sj: ð22Þ

Figure 1. Schematic of a non–phase–locked auditory neuron. (a) In this implementation a model auditory neuron responds to a white noise
stimulus. (b) The stimulus s is filtered through a temporal filter f1 , which has the form t sin(vt)exp({t=t1) where v~2p|103 Hz and t1~3ms. (c)
The output of f1 is shown here. The filter f1 is narrow band, therefore the output oscillates at the characteristic frequency even when the input is
white. (d) The output of f1 is first squared, and in (e), convolved with a second filter f2 of the form t exp({t=t2), with a smoothing time constant
t2~1 ms. (f) The normalized signal is finally thresholded to generate spikes. We assume that time runs discretely in steps of dt~1=20000s.
doi:10.1371/journal.pone.0071959.g001
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Generalizing the use of terms such as ‘‘energy in a frequency

band’’ and ‘‘motion energy,’’ we refer to x as a ‘‘stimulus energy.’’

If the matrix Q is of low rank, this means that we can build x

out of projections of the stimulus onto a correspondingly low

dimensional Euclidean subspace, and we can try to recover the

relevant structure using methods such as the spike–triggered

covariance or maximally informative dimensions. Still, if Q is of

rank 5 (for example), once we identify the five relevant

dimensions we might run out of data before we can calculate

the nonlinear input/output relation of the neuron (this problem

has also been addressed in [39]) and confirm our intuition that

there is indeed a single stimulus feature x to which the cell

responds.

In many cases, it is plausible that neurons could be responding

just to one energy x, but the underlying matrix Q could be of full

rank; a clear example is provided by correlator models for wide–

field motion sensitive neurons, as in [28,29]. But in this case there

is no real ‘‘dimensionality reduction’’ associated with the mapping

from s?x, if all we know how to do is to search for linear

projections or Euclidean subspaces. On the other hand, the

mapping really is a tremendous reduction in complexity, because

the full stimulus s is described by D parameters, while x is just one

number.

Suppose that the response of a neuron to complex stimuli can be

described by saying that the probability of spiking depends solely

on a single stimulus energy x as in Eq. (22), so that

r(t)~r0g(s T
t
:Q:st): ð23Þ

Our task becomes one of showing that we can recover the

underlying matrix Q by analyzing the spike train in relation to the

stimuli, without making any assumptions about the statistics of the

stimuli.

Methods

Core of the method
If the probability of generating an action potential depends on

the stimulus s, then observing the arrival of even a single spike

provides information about the stimulus. Importantly, the data

processing inequality [30] tells us that if we look not at the full

stimulus but only at some limited or compressed description of the

stimulus – a single feature, for example – we can only lose

information. If the neuron really is sensitive to only one stimulus

feature, however, we lose none of the available mutual information

between spikes and stimuli by focusing on this one feature. This

Figure 2. Covariance analysis of the non–phase–locked auditory neuron. (a) If the time constant of the smoothing filter f2 is much shorter
than that of the filter f1 , the spike–triggered covariance matrix has a relatively simple structure. Here, t1~3ms and t2~1ms. (b) Diagonalizing this
covariance matrix yields 2 leading eigenvalues, enlarged for clarity (the rest remain close to 0). (c) The eigenvectors corresponding to the 2 non-zero
eigenvalues are the reconstructed filters plotted here. These form a quadrature pair, as shown in the inset. (d) If the smoothing time of the filter f2 is
larger than that of the first, the covariance matrix has a much richer structure. Here, t1~3ms and t2~30ms. (e) The spike–triggered covariance matrix
decomposes into multiple non-unique eigenvalues, enlarged for clarity. (f) The eigenvectors corresponding to the non-zero eigenvalues give multiple
time-shifted copies of the same filter.
doi:10.1371/journal.pone.0071959.g002
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suggests a natural strategy for identifying relevant stimulus

features, by searching for those which preserve the maximum

amount of information [6]. Further, we can put the success of such

a search on an absolute scale, by estimating more directly the

information that spikes provide about the stimulus [31,33], and

asking what fraction of this information is captured by the best

feature we could find.

Setting up the problem
To make this precise, we recall that the information about the

stimulus s that is conveyed by the observation of a single spike can

be written, following [32], as

Ispike~

ð
dDs P(sDspike) log2

P(sDspike)

P(s)

� �
bits, ð24Þ

where P(s) is the stimulus distribution and P(sDspike) is the

distribution of stimuli given that a spike occurred at a particular

time (the response conditional ensemble [18]). If we consider a

mapping M : s?x, then we can also compute

Ispike(M)~

ð
dx P(xDspike) log2

P(xDspike)

P(x)

� �
, ð25Þ

knowing that for any mapping M, Ispike(M)ƒIspike. If we

restrict ourselves to some class of mappings, then we can search

for an M� which maximizes Ispike(M), and see how close this

is to the real value of Ispike, provided this can be computed

from data [31]. While Ispike is an integral over all stimuli, and

involves distributions over the full, high–dimensional, stimulus

space, Ispike(M) only involves distributions of a single variable

x. If M is fixed, it is relatively easy for experiments to have

sufficient data that P(x) and P(xDspike) will be sampled well.

Thus, as first emphasized in [6], searching for maximally

informative features provides a practical and principled way to

analyze neural responses to high dimensional, naturalistic

stimuli.

The work in [6] considered the case where the stimulus features

are one or more linear projections of the stimulus, xa~Wa
:s, so

that the mappingM is parameterized by the vectors fWag; in the

simplest case there being just one vector W. Here we are interested

in quadratic mappings, corresponding to the stimulus energies in

Eq. (22). Now the mapping M is parameterized by a symmetric

matrix Q. In principle, all the arguments of [6] for the linear case

should hold here because the quadratic form for a full rank

symmetric matrix can be rewritten as a dot product between the

vectorized matrix and the vectorized product ssT. This is

equivalent to the ‘‘kernel trick’’ in machine learning, but we note

that viewing the matrix Q in this way, we lose track of all its

structure. Before starting, we note an obvious problem related to

the number of parameters we are looking for. If we are searching

for a vector W in a D–dimensional stimulus space, we are looking

an object described by D numbers. In fact, the length of the vector

is irrelevant, so that maximizing Ispike(M) corresponds to

optimization in a D{1 dimensional space. But if we are searching

for a symmetric matrix that acts on stimulus vectors, there are

D(Dz1)=2{1 free parameters. This is a problem both because

we have to optimize in a space of much higher dimensionality, and

because determining more parameters reliably must require larger

data sets. We will address these problems shortly, but let’s start by

following the path laid out in [6], which involves searching for the

maximum of Ispike(M) by gradient ascent.

If our stimulus feature is the energy in Eq. (22), then the

distribution of x is

PQ(x)~

ð
dDs d(x{s T :Q:s) P(s), ð26Þ

where the subscript explicitly denotes that P(x) depends on Q. We

take the derivative of this with respect to an element Qij in the

matrix Q,

LPQ(x)

LQij

~

ð
dDs

L
LQij

d(x{sT:Q:s)P(s) ð27Þ

~{

ð
dDs sisj d’(x{sT:Q:s) P(s): ð28Þ

Similarly, we can differentiate the distribution of x conditional on

a spike,

LPQ(xDspike)

LQij

~{

ð
dDs sisj d’(x{sT:Q:s) P(sDspike): ð29Þ

Putting these terms together, we can differentiate the information:

LIspike(M)

LQij

~

ð
dx

dIspike(M)

LPQ(x)

dPQ(x)

LQij

z
dIspike(M)

dPQ(xjspike)

LPQ(xjspike)

LQij

� �

~
1

ln 2

ð
dx

PQ(xjspike)

PQ(x)

ð
dDssisjd

0(x{sT:Q:s)P(s)

{
1

ln 2

ð
dx 1zln

PQ(xjspike)

PQ(x)

� �� �ð
dDssisjd

0(x{sT:Q:s)P(sjspike)

ð30Þ

~{
1

ln 2

ð
dx

ð
dDssisjd(x{sT:Q:s)P(s)

d

dx

PQ(xjspike)

PQ(x)

� �

z
1

ln 2

ð
dx

PQ(x)

PQ(xjspike)

ð
dDssisjd(x{sT:Q:s)P(sjspike)

d

dx

PQ(xjspike)

PQ(x)

� �
:

ð31Þ

But we notice that

ð
dDs sisj d(x{sT:Q:s)P(s)~SsisjDxT PQ(x), ð32Þ

where SsisjDxT is the expectation value of sisj conditional on the

value of the stimulus energy x, and similarly

ð
dDssisjd(x{sT:Q:s)P(sjspike)~

Ssisjjx,spikeTPQ(xjspike),

ð33Þ

where SsisjDx,spikeT is the expectation value conditional on the

energy x and the occurrence of a spike. We can combine these

terms to give
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LIspike(M)

LQij

~

ð
dxPQ(x) Ssisjjx,spikeT{SsisjjxT

� � d

dx

PQ(xjspike)

PQ(x)

� �
,

ð34Þ

or, more compactly,

+QI~

ð
dxPQ(x) SssTDx,spikeT{SssTDxT

� � d

dx

PQ(xDspike)

PQ(x)

� �
:ð35Þ

To learn the maximally informative energy, or the best choice of

the matrix Q, we can ascend the gradient in successive learning

steps,

Q?Qzc +QI where c is small: ð36Þ

Multiple matrices
In the same way that the idea of linear projection can be

generalized to have the probability of spiking depend on multiple

linear projections, we can generalize to the case where the are

multiple relevant stimulus energies. Perhaps the simplest example

Eq. (23) can be generalized to 2 matrices, is the computation of a

(regularized) ratio between two stimulus energies, such that,

r~r0g
s T :Q1

:s

1zs T :Q2
:s

� �
: ð37Þ

Some biological examples of this formulation include gain control

or normalization in V1 [26], optimal estimation theory of motion

detection in visual neurons of insects [29] and complex spectro-

temporal receptive fields of neurons responsible for song process-

ing in songbirds [34,35]. The inference task becomes one of

estimating both matrices Q1 and Q2 by information maximiza-

tion.

As before, we can compute the gradient, noting that this time,

there are two different gradients of Ispike(M),

+Q1
I~

ð
dx PQ1

(x) S
ssT

1zsT:Q2
:s

����x,spikeT
�

{S
ssT

1zsT:Q2
:s

����xT
�

d

dx

PQ1
(xjspike)

PQ1
(x)

" #
,

+Q2
I~{

ð
dx PQ2

(x) S
sT:Q1

:s

1zsT:Q2
:sð Þ2

ssT

�����x,spikeT

"

{S
sT:Q1

:s

1zsT:Q2
:sð Þ2

ssT

�����xT

#
d

dx

PQ2
(xjspike)

PQ2
(x)

" #
ð38Þ

Analogous to Eq. (36), at every learning step, we update each

matrix Qi by the appropriate ith gradient,

Qi?Qizc+Qi
I : ð39Þ

where i~1,2 for the x in Eq. (37). In principle the formalism in

Eq. (37) could yield a more complete description of a neuron’s

nonlinear response properties compared to a single kernel, but

there are some data-requirement challenges which we will address

later.

Technical aspects of optimization
In order to implement Eq. (36) as an algorithm, we have to

evaluate all the relevant probability distributions and integrals. In

practice, this means computing x for all stimuli, choosing an

appropriate binning along the x–axis, and sampling the binned

versions of the spike–triggered and prior distributions. We

compute the expectation values SssTT separately for each bin,

approximate the integrals as sums over the bins, and derivatives as

differences between neighboring bins. To deal with local extrema

in the objective function, we use a large starting value of c and

gradually decrease c during learning. This basic prescription can

be made more sophisticated, but we do not report these technical

improvements here. An example of these ideas is shown in Fig. 3.

We used very small patches from natural images as inputs,

reshaping the intensities in nearby pixels into a D–component

stimulus vector s where D~10. To describe the neuron we chose a

random symmetric matrix K to use as the kernel, and generated

spikes when the stimulus energy, sT:K:s, crossed a threshold, as

illustrated in Fig. 3a. We fixed the spiking threshold such that the

fraction of bins containing spikes is 0:1, and we generated *1000
spikes. We then tried to extract the neuron’s receptive field by

starting with a random initial matrix Q, and following the gradient

of mutual information, as in Eq. (36).

We let the one parameter of the algorithm, c, gradually decrease

from a starting value of 0:5 to 0:05, in order to minimize the

fluctuations around the true maximum of the information. The

relatively large initial value of c allows us to avoid simulated

annealing by letting the simulation hop over false maxima. The

large value of c also explains why the information settles at a value

slightly lower than its peak. The solution bounces back and forth

from one side of this peak to the other, plateauing at a lower value

than the true maximum. After this approximate solution is found,

it is improved by continuing the procedure with smaller c values.

We normalize the resulting matrix to unit length after each

gradient step.

Mutual information, the red trace in Fig. 3b, peaks at the 40th

learning step and remains unchanged after that. The 3 black dots

in Fig. 3b correspond to the steps during the optimization when we

extract and plot the initial guess, the intermediate and the

optimal/maximally informative matrix Q. It is interesting to note

that the intermediate matrix appears completely different from the

optimal Q even though the corresponding mutual information is

relatively close to its maximum (a similar observation was made in

the context of maximally informative dimensions [6]). In general

the number of steps required for the mutual information to peak

and plateau depends inversely on the smoothness of the true

matrix of the neuron and the amount of data available, and

directly with the stimulus dimensionality. While these are only

trends, a more concrete treatment of this exists in the linear case,

shown in [6].

In Fig. 3c the root–mean–square (RMS) reconstruction error

S K{Qð Þ2T1=2 is plotted as a function of the number of learning

steps for a randomly initialized Q (solid line) and when Q is

initialized to the spike–triggered covariance (STC) matrix (dashed

line). RMS error at the start of the algorithm &1 when the ‘‘true’’

matrix K and the initial guess for Q are symmetric, random

matrices, uncorrelated with each other, but is slightly lower when

Q is initialized to the STC. This difference becomes smaller as the

stimulus dimensionality D increases or as the stimulus departs

more strongly from Gaussianity. Both traces decrease, and stop
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changing once our estimate of the optimal Q matches K. This

occurs at the 40th step for the randomly initialized Q and slightly

sooner (30th step) when initialized to the STC. If we had fewer

spikes, our estimate for the optimal Q could still match K
adequately, but the actual RMS error in reconstruction will be

higher. We explore such performance measures and data

requirement issues next.

Performance measures and data requirements
We expect the the accuracy of our reconstruction will depend of

the number of spikes Nspikes. Further, we expect that when the

stimulus dimensionality D increases, the fact that there are more

parameters needed to describe the kernel K means that

performance will deteriorate unless we have access to more data.

To address these issues we explore model neurons as in Fig. 3, but

systematically vary D and Nspikes. Again we consider the most

difficult case, with naturalistic stimuli and kernels that are random

symmetric matrices with elements drawn from a Gaussian

distribution. The results are shown in Fig. 4. Our intuition is that

the number of spikes should scale with the number of free

parameters in the model, D(Dz1)=2, so we always start with

Nspikes~D(Dz1)=2. If we scale Nspikes by the number of free

parameters, the data collapse, as shown in Fig. 4b. Evidently

accurate reconstructions of very large matrices or multiple energies

requires very many spikes. This suggests that it will be important to

have some more constrained models, which we now explore.

Constrained frameworks
The most general stimulus energy is described by D(Dz1)=2

parameters, and this quickly becomes large for high dimensional

stimuli. In many cases it is plausible that the matrix kernel of the

stimulus energy has some simpler structure, which can be used to

reduce the number of parameters.

One way to simplify the description is to use a matrix that has

low rank. If, for example, the rank of the matrix Q in Eq. (22) is

pƒD, then we can find a set of orthogonal vectors fvig such that

Q~
Xp

i~1

viv
T

i : ð40Þ

In terms of these vectors, the stimulus energy is just

x~
Pp

i~1 (vT
i
:s)2.

The low rank approximation reminds us of the simpler,

Euclidean notion of dimensionality reduction discussed above.

Thus, we could introduce variables xi~vT
i
:s for i~1,2, . . . ,p. The

response would then be approximated as depending on all of these

variables, r(x1,x2,:::,xp), as in Eq. (7). In the stimulus energy

approach, all of these multiple Euclidean projections are combined

into x~
P

i x2
i , so that have a more constrained but potentially

more tractable description. When Q is written as Q~
Pp

i~1 viv
T
i ,

the relevant gradient of information, analogous to Eq. (35) is

+vi
I~

2

ð
dx PQ(x) Ss(vT

i s)
��x,spikeT{Ss(vT

i s)
��xT

� � d

dx

PQ(xjspike)

PQ(x)

� �
,
ð41Þ

and we can turn this into an algorithm for updating our estimates

of the vi,

vi?vizc+vi
I : ð42Þ

There is a free direction for the overall normalization of the matrix

Q [6,26] which makes the mutual information invariant to

reparameterization of the quantities. To be sure that Eq. (40) is

Figure 3. Core of the method. (a) A general implementation is shown here. The stimuli s are natural image clips which are D|D pixel patches
resized from a natural image database, as described in [36]. 1000 spikes are generated with a probability per time bin of 0:1 from the model neuron
by a thresholding the term, sT:K:s where the 10|10 matrix K is the receptive field of the neuron. (b) Mutual information between the spiking
response of the model neuron and the quadratic stimulus projection x is plotted as a function of the number of learning steps. Information,
normalized by its value when K~Q, peaks at the 40th learning step and then plateaus. The 3 black dots on the trace denote the points at which we
extract the initial, the intermediate and the optimal matrices for comparison. The maximally informative matrix Q reconstructed at the 80th step,
agrees well with K, indicating convergence. For this implementation the step size c~0:5 at the start and 0:05 at the end of the algorithm. (c) Root–

mean–square (RMS) reconstruction error calculated as S(K{Q)2T1=2 , is plotted as a function of the number of learning steps. This error decreases
steadily until either the randomly initialized matrix (solid line) or the matrix initialized to the spike–triggered covariance matrix (dashed line) matches
K. If Q is initialized to the covariance matrix, the initial RMS error is smaller and the convergence is faster (30th learning step) compared to that for a
randomly initialized Q. For this example, both K and Q are 10|10 matrices and the black dot on the solid trace is at the same learning step as in
panel (b).
doi:10.1371/journal.pone.0071959.g003
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sufficiently general, we cannot constrain these vectors to be of unit

length.

Another way of constraining the kernel of the stimulus energy is

to assume that it is smooth as we move from one stimulus

dimension to the next. Smooth matrices can be expanded into

weighted sums of basis functions,

Q~
XM
m~1

am B(m), ð43Þ

and finding the optimal matrix then is equivalent to calculating the

most informative M–dimensional vector of weights.

The basis can be chosen so that systematically increasing the

number of basis components M allows the reconstruction of

progressively finer features in Q. For example, we can consider

fB(m)g to be a set of Gaussian bumps tiling the D|D matrix Q,

and whose scale (standard deviation) is inversely proportional toffiffiffiffiffiffi
M
p

. For M?D2=2 the basis matrix set becomes a complete

basis, allowing every Q to be exactly represented by the vector of

coefficients a. In any matrix basis representation, the learning rule

becomes,

am?amzc
XM
i,j~1

LI

LQij

B
(m)
ij : ð44Þ

This is equivalent to taking projections of our general learning

rule, Eq. (36), onto the basis elements.

Results

A model auditory neuron
As a first example, we return to the model auditory neuron

whose response properties from Eq’s (8) and (9) were schematized

in Fig. 1. Rather than studying its responses to white noise stimuli,

however, we consider the responses to bird song, as shown in

Fig. 5a. We start with Eq. (8) and see that it is equivalent to a

stimulus energy with kernel K defined through

p(t)~

ð
dt1

ð
dt2 s(t1) K(t{t1,t{t2) s(t2), ð45Þ

K~

ð
dtf2(t)f1(t{t{t1)f1(t{t{t2): ð46Þ

We used the same filters as we showed in Fig. 1b and Fig. 1e to

construct K, which is plotted in Fig. 5b. We can also look in a

mixed time–frequency representation to generate a spectro-

temporal ‘‘sensitivity,’’ ~KK, as follows:

~KK(v,t)~

ð
dt K tz

t

2
,t{

t

2


 �
ezi vt: ð47Þ

~KK is a characteristic of the model neuron and describes its

selectivity to the stimulus. We see that this neuron responds to

sound with frequencies around 1kHz with a temporal

dependence dictated by the time constants of the 2 filters that

make up the neuron’s receptive field matrix K, as shown in

Fig. 5c. This description has the flavor of a spectrotemporal

receptive field (STRF), but in the usual implementations of the

STRF idea a spectrogram representation is imposed onto the

stimulus, fixing the shapes of the elementary bins in the time–

frequency plane and assuming that the cell responds only to

stimulus power in each frequency band. Here, in contrast,

Fourier transforms are in principle continuous, and the general

quadratic form allows for more than just stimulus power to be

relevant.

The natural stimuli we used to probe this model auditory

neuron’s receptive field came from recordings of zebra finch songs,

modified into stimulus clips s. The songs were interpolated down

from their original sampling rate to retain the same discrete time

Figure 4. Data requirement and performance issues. (a) Reconstruction error S(K{Q)2T1=2 is plotted as a function of number of spikes
(Nspikes) for matrices corresponding to stimuli of increasing dimensionality (D~10,20,40 & 50). Both matrices are normalized consistently. (b) The
traces for different values of D collapse when the error is normalized by the (maximum) value at Nspikes~D(Dz1)=2 for each D, and plotted as a
function of 2Nspikes=(D(Dz1)).
doi:10.1371/journal.pone.0071959.g004
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steps (dt~1=20000 s) that we use in Fig. 1. An example sound

pressure wave of a song stimulus is plotted in Fig. 5a.

This model neuron, as illustrated in Fig. 1, emitted spikes when

the power in Eq. (46) exceeded a threshold. We set the threshold of

firing so that the mean spike rate was 20s{1. We presented *42
minutes of bird song stimuli to the model neuron, collecting

roughly 50,000 spikes. We follow the gradient ascent procedure

exactly as described in Eq. (36). Note that K in this model is a

300|300 matrix, and we make no further assumptions about its

structure; we start with a random initial condition (Fig. 5d). The

maximally informative matrix that we find is shown in Fig. 5e, and

is in agreement with the matrix K; we can see this in the frequency

domain as well, shown in Fig. 5f. Quantitatively, the RMS

reconstruction error for this inference is less than 5% of the

maximum for any two uncorrelated random, symmetric matrices

of the same size.

Model complex cells
We consider the model complex cell described earlier in Eq.

(18), but allow integration over just one frame of a movie, so we

don’t need to describe the temporal filter. We chose parameters

k~2p=3, s1~1:6 and s2~5, with positions measured in pixels.

The stimuli were 20,000 grayscale 30|30 pixel image patches

extracted from a calibrated natural image database [36]. Spikes

were generated as before, with a threshold set to ensure that the

fraction of bins containing spikes is 0:1. We note that, in this

model, the kernel is explicitly of rank 2, and so we followed the

algorithm in Eq. (41). The results are shown in Fig. 6. As expected,

the best possible reconstruction is a vector pair v1, v2 that is equal

to the pair F1, F2 up to a rotation.

Suppose that the real neuron, as in our model, is described by a

kernel of rank 2, but we don’t know this and hence search for a

kernel of higher rank. As shown in Fig. 7c, higher rank fits do not

increase the information that we capture, either for random

stimuli or for natural stimuli. Interestingly, however, the ‘‘extra’’

components of our model are not driven to zero, but appear as

(redundant) linear combinations of the two true underlying

vectors, so that the algorithm still finds a genuinely two

dimensional, albeit over–complete, solution. We could also

initialize the algorithm with a full rank matrix,

Q~
P2

i~1 viv
T
i zg, where g is Gaussian random noise. The

convergence of Q to the ‘‘true’’ matrix K can be determined by

looking at the projections of the leading eigenvectors of the matrix

Q at the end of the maximization algorithm. In this complex cell

example where spikes are generated from a rank 2 matrix, the

eigenvectors corresponding to the two leading eigenvalues of the fit

matrix Q should be identical to F1, F2. The remaining eigenvalues

should be driven to be 0, and this is indeed what we see in Fig. 7d.

Figure 5. Analyzing the responses of the model auditory neuron to a bird song. (a) The sound pressure wave of a zebra finch song used as
stimulus to the model neuron is shown here. (b) The equivalent matrix K, constructed from the two filters as described in Eq. (8) is 300|300 in size

but has a relatively simple structure. (c) Taking a Fourier transform over t2 of K yields a spectrotemporal sensitivity matrix, ~KK with a peak at 1kHz. (d)
The initial guess for Q is the random symmetric matrix plotted here. (e) The optimal matrix Q that maximizes the mutual information between the
spiking response of the model neuron and the projection x~sT:Q:s matches K well at the end of 100 learning steps. (f) The spectrotemporal

sensitivity ~QQ, corresponding to the maximally informative stimulus energy has the same response preferences as ~KK at 1kHz.
doi:10.1371/journal.pone.0071959.g005
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Matrix basis formalism
Here we explore the matrix basis formalism, as described in Eq.

(43), to infer a matrix K that could be of arbitrarily high rank. For

K we used a symmetrized 250|250 pixel image of a fluid jet as

shown in Fig. 8a. While this is not an example of a receptive field

from biology, it illustrates the validity of our approach even when

the response has an atypical and complex dependence on the

stimulus. Spikes were generated by thresholding the energy sT:K:s,

and the same naturalistic visual stimulus ensemble was used as

before. Gaussian basis matrices shown in the inset of Fig. 8b were

used to represent the quadratic kernel, reducing the number of

free parameters from *6|104 to M~225. We start the gradient

ascent with a large c value of 1 and progressively scale it down to

0:1 near the end of the algorithm; Fig. 8b shows the information

plateauing in about 40 learning steps. The maximally informative

quadratic kernel Q reconstructed from these 225 basis coefficients

is shown in Fig. 8c. Optimizing the coefficients of the 225 basis

functions captures the overall structure of the kernel, and this can

be improved to an almost perfect reconstruction (at a pixel–by–

pixel resolution) by increasing M, as shown in Fig. 8d. The

Figure 6. Receptive fields of a model complex cell and the reconstructed maximally informative pair. (a) Information as a function of
the number of learning steps peaks and then plateaus. The black dot is the point where the reconstructed receptive fields are shown in panel (d)
below. (b) Reconstructed vectors v1 , v2 are rotated versions of the receptive fields F1 , F2 , but span the same linear subspace (all vectors are
normalized to unit length). (c) The receptive field of the model complex cell is given by the two linear filters in Eq. (18): F1 (left) and F2 (right). (d) The

reconstructed receptive fields at the 100th learning step (black dot in panel (a) above) with filters v1 (left) and v2 (right) rotated to best align with the
F1 – F2 pair.
doi:10.1371/journal.pone.0071959.g006
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reduction in the number of parameters to be estimated through

this simplification means that this method can be easily extended

to the inference of much larger matrices, with a precision dictated

by the amount of data available.

Multiple matrices
We consider a model neuron similar to the one we described in

Eq. (37), with stimulus dimensionality D~5; the two matrices, K1

and K2, are plotted in Fig. 9a, along with a schematic of the spikes

produced when the nonlinearity g(:) is a threshold. Again we

constructed stimuli from nearby pixels of natural images, so that

the distribution is strongly correlated and non–Gaussian; the

spiking threshold was set so that the fraction of bins with spikes to

0:3, and we generated *10,000 spikes. We followed the algorithm

in Eq’s (38) and (39) to find the maximally informative matrices Q1

and Q2. Mutual information normalized by the maximum when

K1~Q1 and K2~Q2, and RMS reconstruction error in green

(calculated as S (K1zK2){(Q1zQ2)½ �2T1=2) are plotted as a

function of the learning steps in Fig. 9c. While convergence is

definitely possible, our estimates of the maximally informative

matrices are noisier than in the single matrix instances, even with a

relatively large amount of data. We expect that realistic searches

for multiple stimulus energies will require us to impose some

simplifying structure on the underlying matrices.

Discussion

There is a long history in neuroscience of trying to extract

receptive fields from neural responses to a variety of synthetic and

natural stimuli [40]. While the field began with a focus on linear

models for feature selectivity, more complex, nonlinear notions of

‘‘features’’ have been explored as well; some of these studies go

back several decades. In the Y-type retinal ganglion cells of the cat

Figure 7. Over-fitting the model complex cell with matrices of successively increasing rank. (a) Receptive fields reconstructed after
mutual information is maximized with matrices of rank p~2,3,4 and 5 (from left to right). (b) The resulting vectors, v1 through v5 , at the end of the
information maximization are no longer orthogonal but project fully into a unit circle in the F1–F2 plane. (c) Maximum mutual information as a
function of the rank of fit, p, for random stimuli (open circles) or for the stimulus matrix generated using natural scenes (filled circles), peaks at the
rank equal to that of the ‘‘data’’ (rank p~2 for the model complex cell), and remains unchanged as the rank of Q increases. (d) Over-fitting the model
matrix K with Gaussian noise does not add to the mutual information IQ and the algorithm successfully finds a two dimensional solution. Eigenvalue

profile of matrix Q~
P2

i~1 viv
T
i zg where g is a 30|30 sized-random matrix after maximizing information with respect to the complex cell. Aside

from two leading eigenvalues with magnitude 1, the rest ?0.
doi:10.1371/journal.pone.0071959.g007
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responding to multi-sinusoidal signals, for instance, the respons-

es were fit by incorporating second order kernels [41,42]. If we

start with a model in which, as discussed here, the probability of

spiking is determined by a quadratic ‘‘stimulus energy,’’ then the

second order kernel is precisely the first term in a series

expansion of the probability as a function of the energy; our

approach thus connects to a large body of work using series

expansion methods (e.g., Wiener and Volterra series) to

characterize the input/output relations of neurons [43]. The

class of models we consider allows for a more or less arbitrary

nonlinear relationship between the spike probability and the

stimulus energy, thus summing up a selection of all higher order

terms in a series expansion.

There have also been other more recent efforts that point to the

importance of quadratic forms in stimulus space. It is shown in

[37] that a logistic dependence of the spike probability on a

quadratic form is the maximum entropy, and hence least

structured, model consistent with a measurement of the spike–

triggered covariance matrix, and that this identification is correct

without any assumptions about the distributions of inputs. In

addition [38], compares information theoretic extensions of spike-

triggered covariance to non-Gaussian stimuli and concludes that

when the number of free parameters is large, the non-convex

nature of multiple MID optimizations could raise issues. In a

different direction, the work in [39] considers models in which the

spike probability depends exponentially on a quadratic form, and

spiking is explicitly a Poisson process. They show that this model,

and some generalizations, lends itself to a Bayesian formulation, in

which various simplifying structures (see Section IV) can be

imposed through prior distributions on Q. In some limits, the

different recent approaches are equivalent to one another, and to

the search for maximally informative stimulus energies that we

propose here (see [45]).

The maximally informative stimulus energies we have devel-

oped can be generalized to include the inference of an arbitrary

two-dimensional, nonlinear quantity of the form

I(fb:s,Q:sg; spikeÞ without an explicit assumption about how

the linear and the quadratic part combine. This idea is explored

further in [45]. In a similar spirit, searching for multiple stimulus

energies (shown in Fig. 9) would allow us to discover sensitivity to

different sorts of nonlinear combinations, ranging from divisive

nonlinearities and normalization, to logical AND operations

among multiple features, without having to assume a specific

form for these interactions in advance.

Figure 8. Matrix basis formalism for constraining the number of free parameters. (a) A complex, structured full rank matrix K is generated
by symmetrizing a 250|250 pixel image of a fluid jet, and used as the ‘‘true’’ kernel for our model neuron. (b) Mutual information increases with the
number of learning steps, peaks at the 40th step and remains unchanged thereafter. Inset shows the collection of 225 Gaussian matrix basis functions
whose peaks densely tile the space of K. A trial matrix is constructed as a linear sum (with coefficients famg) of the basis matrices, and information

optimization is performed over famg. The black dot at the 100th learning step is the point where Q is extracted. (c) The reconstructed matrix kernel Q
after maximizing mutual information using the 225 basis coefficients making up the kernel is shown here. (d) The RMS reconstruction error

S(K{Q)2T1=2 decreases as the number of basis functions M increases from 4 to 104 . With enough data perfect reconstruction is possible as M
approaches the number of independent pixels in K.
doi:10.1371/journal.pone.0071959.g008
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An important aspect of methods based on information theoretic

measures is that the quantities we compute have a meaning

beyond more detailed models, and our results can be calibrated on

an absolute scale. As an example, almost no neuron in the brain

behaves exactly as a modulated Poisson process, in which the

arrival times of successive spikes are independent given the

stimulus. Nonetheless, there is a well defined question as to which

stimulus features are most informative about the arrival times of

individual spikes. Single spikes may acquire sensitivity to multiple

stimulus features through interactions with other spikes, but

finding these features, or the most informative single feature, does

not require us to make assumptions about the spike statistics.

Similarly, in experiments where stimuli are repeated we can

estimate the information carried by the arrival times of single

spikes or more complex events, without assumptions about the

interactions among these events [32,44], and this provides an

absolute calibration for the analysis of feature selectivity: we can

ask not just for the features that capture the maximum

information, but we can compare this feature-based information

to the total, and ask if a description in terms of a small number of

features really works.

In conclusion, while the notion that neurons respond to multiple

projections of the stimulus onto orthogonal filters is powerful, it

has been difficult to develop a systematic framework to infer a

neuron’s response properties when there are more than two filters.

To get around this limitation, we propose an alternative model in

which the neural response is characterized by features that are

quadratic functions of the stimulus. In other words, instead of

being described by multiple linear filters, the selectivity of the

neuron is described by a single quadratic kernel. The choice of a

quadratic form is motived by the fact that many neural

phenomena previously studied in isolation can be viewed as

instances of quadratic dependences on the stimulus. We presented

a method for inferring maximally informative stimulus energies

based on information maximization. We make no assumptions

about how the quadratic projections onto the resulting matrices

map onto patterns of spiking and silence in the neuron. This

approach yields asymptotically unbiased estimates for receptive

fields for arbitrary ensembles of stimuli, but requires optimization

in a possibly rugged information landscape. While clearly only one

step toward a more complete collection of such tools, the methods

we have presented should help elucidate how sensitivity to high–

order statistical features of natural inputs arises in a wide range of

systems.
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